In [2]:
hop_length = 256
win_length = 2048
max_win = 3
mu = 4
Gamma = 1
f_novfn = lambda x, sr: get_superflux_novfn(x, sr, hop_length, win_length, max_win, mu, Gamma)
results = evaluate_tempos(f_novfn, get_acf_dft_tempo, hop_length, 44100)
ipd.HTML(results.to_html(escape=False, float_format='%.2f'))
12 / 20
Out[2]:
names Ground-Truth Tempos Estimated Tempos Close Enough
0 train1.wav [64.5, 129.5] 258.40 False
1 train2.wav [83.5, 167.5] 333.42 False
2 train3.wav [76.5, 153.0] 102.34 False
3 train4.wav [42.0, 126.0] 126.05 True
4 train5.wav [68.5, 205.5] 68.00 True
5 train6.wav [41.0, 82.0] 164.06 False
6 train7.wav [56.5, 113.5] 112.35 True
7 train8.wav [74.0, 148.0] 295.31 False
8 train9.wav [64.5, 129.0] 258.40 False
9 train10.wav [61.0, 122.5] 61.52 True
10 train11.wav [70.0, 140.0] 139.67 True
11 train12.wav [27.0, 54.0] 53.83 True
12 train13.wav [90.0, 180.0] 181.33 True
13 train14.wav [65.0, 130.0] 130.83 True
14 train15.wav [62.0, 186.0] 184.57 True
15 train16.wav [45.0, 90.5] 181.33 False
16 train17.wav [45.5, 91.5] 93.96 True
17 train18.wav [61.0, 121.5] 15.13 False
18 train19.wav [93.5, 188.0] 187.93 True
19 train20.wav [115.5, 220.5] 219.91 True
In [ ]: