In [30]:
hop_length = 256
win_length = 2048
f_novfn = lambda x, sr: get_novfn(x, sr, hop_length, win_length)
results = evaluate_tempos(f_novfn, get_fourier_tempo, hop_length, 44100)
ipd.HTML(results.to_html(escape=False, float_format='%.2f'))
5 / 20
Out[30]:
names Ground-Truth Tempos Estimated Tempos Close Enough
0 train1.wav [64.5, 129.5] 258.05 False
1 train2.wav [83.5, 167.5] 8.00 False
2 train3.wav [76.5, 153.0] 306.06 False
3 train4.wav [42.0, 126.0] 126.00 True
4 train5.wav [68.5, 205.5] 206.04 True
5 train6.wav [41.0, 82.0] 164.03 False
6 train7.wav [56.5, 113.5] 56.01 True
7 train8.wav [74.0, 148.0] 592.00 False
8 train9.wav [64.5, 129.0] 258.00 False
9 train10.wav [61.0, 122.5] 2.00 False
10 train11.wav [70.0, 140.0] 280.05 False
11 train12.wav [27.0, 54.0] 2.00 False
12 train13.wav [90.0, 180.0] 360.07 False
13 train14.wav [65.0, 130.0] 520.10 False
14 train15.wav [62.0, 186.0] 186.03 True
15 train16.wav [45.0, 90.5] 11.98 False
16 train17.wav [45.5, 91.5] 12.00 False
17 train18.wav [61.0, 121.5] 2.00 False
18 train19.wav [93.5, 188.0] 188.04 True
19 train20.wav [115.5, 220.5] 440.08 False
In [ ]: